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Abstract Motivation Sequence of policies
We study Howard’s Policy Iteration for Deterministic Markov Decision Processes. The best known , o , , , ,
upper bound is exponential and the current known lower bound is as follows: For the input size = Although Howard's policy iteration runs fast in practice [ 1], the theoretical
I, the algorithm requires Q(v/I) iterations, i.e., the current lower bound on iterations is sub-linear guarantees are a mystery.

with respect to the input size. Our main result is an improved lower bound for this fundamental

. . . . . . . = Lower and upper bounds for Howard’s policy iteration have deep theoretical
algorithm where we show that for the input size I, the algorithm requires €)(1) iterations. PP P Y P

impacts, e.g., establishing lower bounds for pivoting methods in linear

Deterministic Markov Decision Processes programming [2].

- A finite directed weighted graph G = (V, E, w); Our Result
= Weight function w: E — 7Z assigns a weight to each edge;
" n is the number of vertices, m is the number of edges, and W is the maximum Theorem. There exists a family of graphs with O(n) vertices, O(n?) edges,
absolute weight. and weights of size up to W = O(n?) on which Howard'’s Policy Iteration
takes Q(n?) iterations. (©) Policy o,
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Upper bound on number of iterations: O(n*W) [4, 6] & exponential non-parametric bound [5]

Mean-payoff Objectives Lower bound on number of iterations: (d) Policy ;441 (e) Policy 7;
, . Vi |E] 44 Input Size I # Iterations  Upper Bound
» Mean-payoff for an infinite path w = (v, v1, . . .) 2 Open Problems
1 Prev. best known [3]  2n m On™) O(mn’logn) m—n+1  exponential
1 L . :
MeanPayoff(w) = lim inf ~ Z w(vy, vig) Ours om Om?) Om2)  Onlosn) Q(n2) On?) !t 'S .an open conjecture by [3] that m is an upper bound on the number of
e iterations.
The controller wants to maximize the payoff. - Howard'’s Policy Iteration algorithm performs outstandingly well in practice
even for (stochastic) MDPs or stochastic games, in spite of the theoretical
Our example . . .
Howard's Policy Iteration exponential lower bounds. Some analysis of the smoothed complexity has
| | | | .. | In our example, the top vertex t; is connected to all vertices with indices less than been published, but a comprehensive explanation is still missing.
The algorithm starts vvlth.an arbitrary policy oy. In iteration k, the algorithm locally or equal to i. The bottom vertex b, is connected to all top vertices and to all
improves the current policy: bottom vertices with indices less than i. The weights of the self-loops increase References
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lteration algorithm in deterministic Markov Decision Processes?



