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Abstract

We studyHoward’s Policy Iteration forDeterministicMarkovDecision Processes. The best known

upper bound is exponential and the current known lower bound is as follows: For the input size

I , the algorithm requires Ω̃(
√

I) iterations, i.e., the current lower bound on iterations is sub-linear

with respect to the input size. Our main result is an improved lower bound for this fundamental

algorithm where we show that for the input size I , the algorithm requires Ω̃(I) iterations.

Deterministic Markov Decision Processes

A finite directed weighted graph G = (V, E, w);
Weight function w : E → Z assigns a weight to each edge;

n is the number of vertices, m is the number of edges, and W is the maximum

absolute weight.
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Mean-payoff Objectives

Mean-payoff for an infinite path ω = 〈v0, v1, . . .〉

MeanPayoff(ω) := lim inf
T→∞

1
T

T−1∑
i=0

w(vi, vi+1)

The controller wants to maximize the payoff.

Howard’s Policy Iteration

The algorithm starts with an arbitrary policy σ0. In iteration k, the algorithm locally

improves the current policy:

The algorithm computes the payoff and the potential of the policy σk;

it then obtains the policy σk+1 by locally maximizing first the payoff and second

the potential.

The algorithm terminates if σk+1 = σk.

Problem

What is the lower bound on the number of iterations required by Howard’s Policy

Iteration algorithm in deterministic Markov Decision Processes?

Motivation

Although Howard’s policy iteration runs fast in practice [1], the theoretical

guarantees are a mystery.

Lower and upper bounds for Howard’s policy iteration have deep theoretical

impacts, e.g., establishing lower bounds for pivoting methods in linear

programming [2].

Our Result

Theorem. There exists a family of graphs with O(n) vertices, O(n2) edges,
and weights of size up to W = O(n2) on which Howard’s Policy Iteration

takes Ω(n2) iterations.

Comparison to Previous Results

Upper bound on number of iterations: O(n3W ) [4, 6] & exponential non-parametric bound [5]

Lower bound on number of iterations:

|V | |E| W Input Size I # Iterations Upper Bound

Prev. best known [3] 2n m O(nn2) O(mn2 log n) m − n + 1 exponential

Ours 2n O(n2) O(n2) O(n2 log n) Ω(n2) O(n5)

Our example

In our example, the top vertex ti is connected to all vertices with indices less than

or equal to i. The bottom vertex bi is connected to all top vertices and to all

bottom vertices with indices less than i. The weights of the self-loops increase

with i, unlabeled (gray) edges have weight 0.
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Sequence of policies

t1 t2 . . . ti−2 ti−1 ti ti+1 ti+2 . . . tn

b1 b2 . . . bi−2 bi−1 bi bi+1 bi+2 . . . bn

(a) Policy πi

t1 t2 . . . ti−2 ti−1 ti ti+1 ti+2 . . . tn

b1 b2 . . . bi−2 bi−1 bi bi+1 bi+2 . . . bn

(b) Policy σi,1.

t1 t2 . . . tj tj+1 tj+2 . . . ti−1 ti ti+1 . . . tn

b1 b2 . . . bj bj+1 bj+2 . . . bi−1 bi bi+1 . . . bn
. . .

(c) Policy σi,j

t1 t2 . . . ti−1 ti ti+1 ti+2 ti+3 . . . tn

b1 b2 . . . bi−1 bi bi+1 bi+2 bi+3 . . . bn
. . .

(d) Policy σi,i+1

t1 t2 . . . ti−1 ti ti+1 ti+2 ti+3 . . . tn

b1 b2 . . . bi−1 bi bi+1 bi+2 bi+3 . . . bn
. . .

(e) Policy τi

Open Problems

It is an open conjecture by [3] that m is an upper bound on the number of

iterations.

Howard’s Policy Iteration algorithm performs outstandingly well in practice

even for (stochastic) MDPs or stochastic games, in spite of the theoretical

exponential lower bounds. Some analysis of the smoothed complexity has

been published, but a comprehensive explanation is still missing.
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